
A Multi-Molecular Fusion to Detect Transcriptomic Signature 
in Tissue-Specific Cancer

Identifying key molecular signatures[1-3] from a genomic pro-
le has become a growing concern in biomedical research 

in the last couple of decades. A gene signature[4,5] is dened as 
a single gene or set of genes of a cell consisting of a distinc-
tive gene expression pattern owing to modied pathogenic 
conditions or biological processes.[6] The gene signature oers 

numerous benets in various cancers and their prognosis. Ac-
cording to Chanrion et al.[7], gene signatures can not only 
predict the relapse of primary breast cancers treated with 
tamoxifen but also help in the therapeutic management of 
estrogen receptor (ER)-positive cancers. Invasiveness gene 
signatures are signicantly expressed genes that are assessed 

Objectives: Analysis of multi-molecular interactions and detection of combinatorial transcriptomic signatures are 
emerging as important research topics in disease analytics. Currently, a combination of gene and miRNA expression 
profiling in bioinformatic analysis enables us to comprehensively detect molecular changes in cancer and thereafter 
to identify integrated signatures and pathways that exist in the miRNA and gene interaction networks. Although many 
methodologies and applications have been suggested in recent literature, efficient techniques that can integrate the 
complex gene as well as miRNA expression profiles, and identify the most relevant signatures are required. 
Methods: In this article, we presented a new framework of multi-molecular data integration to identify combinatorial 
transcriptomic signatures through the strategy of unsupervised learning and target detection. Later, we evaluated their 
utility in survival analysis through a multi-variate Cox regression study. We used a cervical cancer data repository to 
conduct our experiment. To construct the miRNA-mRNA interaction network, we selected the downregulated mRNAs 
that were negatively correlated with the upregulated miRNAs. Thereafter, we identified dense modules by using an 
unsupervised learning technique. The silhouette index value was computed for each cluster.
Results: By considering the network centrality of each molecule belonging to each cluster we identified top 3 com-
bined signatures We also highlighted cluster-2 (hsa-mir-944, CFTR, GABRB2, HNF4G, TAC1, and C7orf57) for its high 
cohesiveness and contained a combined signature. We then applied three well-known classifiers (viz., SVM, KNN, and 
random forest) using 10-fold cross-validation, and obtained a high AUC score for cluster-2. Finally, we conducted a 
survival study with each molecule of the same cluster.
Conclusion: Finally, we conducted a survival study with each molecule of the same cluster. Our proposed combined 
signature detection strategy can determine the signature(s) for any microarray or RNA-Seq profile. The code is available 
at https://github.com/sahasuparna/DeMoS
Keywords: Co-expression, Limma, Combinatorial transcriptomic fused signature, Disease classication, miRNA target 
gene, survival study

 Suparna Saha,1  Saurav Mallik,2  Sanghamitra Bandyopadhyay3

1SyMeC Data Center, Indian Statistical Institute, Kolkata, India
2Department of Environmental Epigenetics, Harvard T H Chan School of Public Health, Boston, USA
3Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India

Abstract

DOI: 10.14744/ejmo.2022.53376
EJMO 2022;6(2):156–171

Research Article

Cite This Article: Saha S, Mallik S, Bandyopadhyay S. A Multi-Molecular Fusion to Detect Transcriptomic Signature in Tissue-
Specific Cancer. EJMO 2022;6(2):156–171.

Address for correspondence: Saurav Mallik, PhD. Department of Environmental Epigenetics, Harvard T H Chan School of Public Health, Boston, USA
Phone: (+1)617-432-0478 E-mail: sauravmtech2@gmail.com, smallik@hsph.harvard.edu
Submitted Date: March 26, 2022 Accepted Date: May 28, 2022 Available Online Date: June 06, 2022
©Copyright 2022 by Eurasian Journal of Medicine and Oncology - Available online at www.ejmo.org
OPEN ACCESS  This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



157EJMO

for their relationship with overall and metastasis-free surviv-
al in patients with breast or other types of cancer.[8] Gene sig-
natures are also identied as pathological factors that provide 
prognostic information in ER-positive breast cancers, and in 
the early stage of the disease, they help decide whether a pa-
tient will need supportive chemotherapy.[9] Gene signatures 
might be targeted by various miRNAs, which are non-coding 
RNAs (approximately 18{25 nucleotides long) that partici-
pate in the post-transcriptional regulation of gene expres-
sion.[10] These miRNAs are abnormally expressed in various 
malignancies as tumor suppressors or oncogenes.[11] They 
regulate various processes in carcinogenesis such as metas-
tasis.[12] and cell proliferation.[13] Hence, miRNAs are promis-
ing markers in the diagnosis, prognosis, and therapy of can-
cer. MiRNAs regulate gene expression by binding to partially 
complementary sites in the target mRNAs.[14] Dysregulation 
of miRNAs is responsible for the formation and progression 
of tumors.[15,16] Cervical cancer, caused due to the alteration 
of cells in the cervix, is the leading cause of death in women, 
second only to breast cancer. This cancer, which is prone to 
metastasis, is dicult to diagnose in the early stages, and is 
tough to operate in the advanced stages when it is usually 
detected. Thus, gene signatures are useful for the early de-
tection and treatment of cervical cancer by understanding 
the molecular level mechanisms underlying its progression. 
Errors in statistical analysis are one of the most complex is-
sues in this decade. There are two types of hypothesis in sta-
tistical analysis, namely, the null hypothesis and alternative 
hypothesis. The null hypothesis denotes no signicant dier-
ence between the mean of the diseased and control groups, 
whereas the alternative hypothesis signies a signicant dier-
ence between the mean of these two groups.[17] An appro-
priate statistical test is required to determine dierentially 
expressed transcripts among samples. The linear model for 
microarray (Limma) package based on the empirical Bayes 
test is useful for all sizes and types of data distribution (nor-
mal or non-normal distribution) for RNA-Seq or similar type 
of data.[18-19] In this era of social networking and biomedical 
engineering, handling big data is challenging because of 
not only its size but also the heterogeneity with high dimen-
sions, and other complicated relationships. Due to such chal-
lenges, network analysis is important because the network is 
a powerful way to represent complex relationships among a 
large number of objects. In biomedicine, a network is a con-
venient place such as the regulatory network, GCN[20], and 
protein-protein interaction network.[21]

In our paper, we introduce a new framework to determine 
dense module-based combinedsignatures. We identied 
the high cohesive cluster and discussed their application in 
a prognosis survival study. Most of the state-of-the-art ap-
proaches used hierarchical clustering that avoids overlap-

ping modules. To overcome this limitation, we developed a 
novel framework to determine the potential dense module-
based signatures by using network based model. First, we 
identied the predicted target genes corresponding to the di-
erentially expressed miRNAs. After extracting the common 
genes between the signicantly expressed genes and the pre-
dicted target genes. For the network construction we used 
the overexpressed miRNAs with their negatively correlated 
downregulated target genes. In addition, we conducted a 
comparative study between the high cohesive cluster ob-
tained using our method and miRNA and mRNA signatures 
in separation, obtained using our method. As the aforemen-
tioned cluster produced a signicant p-value for the progno-
sis survival analysis, it could produce a clinically promising 
signature. Moreover, our proposed method is highly eec-
tive in identifying the top 3 combined molecular signatures. 
Since the last two decades, gene signatures are widely used 
in omics data analysis. In this article, we propose a frame-
work that can identify integrated modules and discuss their 
application in a prognosis study. In future research, we will 
consider the application of epigenetics (viz., methylation) to 
the existing framework. A recent study states that the epig-
enome contains contiguous regions denoted as dierentially 
methylated regions (DMRs) that are signicantly associated 
with numerous diseases[22-23]. Mallik et al.[24] conducted a 
comparative study of dierent DMR- nding methods; the re-
sults of this study might motivate our future work. Several 
types of gene signatures exist in the bioinformatics eld, such 
as the prognostic gene signature, diagnostic gene signature, 
and predictive gene signature. The term `prognostic' signies 
the prediction of the expected development (duration, de-
scription, and function) of the course of a disease. Hence, the 
prognostic gene signature is vital to the overall outcome of a 
disease, irrespective of therapeutic interference.

These prognostic signatures are useful in several tissue-Spe-
cific cancers such as hepatocellular carcinoma [25], leukemia 
[26], and breast cancer.[27] The diagnostic gene signature acts 
as a biomarker that dierentiates the severity of phenotypes 
of analogous therapeutic conditions into the mild, moder-
ate, or severe stage based on an inception point.[28]. A predic-
tive gene signature predicts the outcome of therapeutic in-
tervention and does not depend on the prognosis.[29] Hence, 
these signatures contain crucial information. Several highly 
ecient biological networks can be used to predict the new 
functionality of genes.[30] One of the most popular biological 
networks is GCN, where each node in the network denotes 
a gene. Based on the edge between the two genes (nodes 
in GCN) of the network, GCNs are of two types, namely, 
unweighted-GCNs (UGCNs) and weighted-GCNs (WGCNs). 
In a UGCN, a threshold value is applied to the correlation 
coecient. If the correlation coecient value is higher than the 
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threshold value, an edge must exist between two genes; 
otherwise, no edge is made. In a WGCN, the result depends 
on the choice of the threshold of the correlation coecient. 
Hence, the WGCN is a preferred network, where an edge 
exists between every pair of nodes, and the weights of the 
edges are determined by the correlation values between the 
corresponding nodes. Various techniques have been cur-
rently developed for multi-omics integration. Weighted con-
nectivity measure integrating co-methylation, co-expression 
and protein-protein interactions (WeCoMXP), based on the 
weighted connectivity measure, is an approach for integrat-
ing multi-omics data from the weighted normalized gene 
regulatory network to detect gene modules.[31] WeCoMXP is 
the most promising integration technique in which tri-omics 
pro-les (expression data, methylation data, and protein-
protein interactions) and hierarchical clustering are used to 
identify gene modules. Functional gene module detection 
(FGMD)[32] is another method for determining gene modules. 
In a previous study on FGMD, single omics (gene expression 
data) data were used from two platforms, RNA-Seq and mi-
croarray, for the same gene pairs and paired samples. First, 
the log2 ratios between the tumor samples and the average 
of normal samples were calculated. To identify functional 
gene modules, gene expression data of the microarray and 
RNA-Seq platforms were compared using the Pearson corre-
lation coecient (PCC) for the same gene pairs. Then, the gene 
expression network was constructed using the PCC values, 
and the gene pairs having higher PCC values were extract-
ed. After extraction, hierarchical clustering was applied to 
the selected gene pairs. The analogous modules based on 
the overlap ratio were combined using hierarchical cluster-
ing with the dynamic tree cut method.[33] Finally, the FGMD 
modules were identied. The double-label propagation clus-
tering algorithm (DLPCA) is a new algorithm for determining 
disease-associated modules by using the gene expression 
dataset. In a previous study, DLPCA used the pathogenic 
records of genes as the properties of nodes from the GCN 
constructed using the WGCN analysis (WGCNA) tool.[34] Gene 
modules were constructed by applying a multilabel cluster-
ing algorithm, followed by the DLPCA. During the module 
detection phase, the DLPCA classied the corresponding 
modules into diseased and non-diseased samples.[35]

Several well-known algorithms are used to identify a gene 
module, and many of them are developed to extract net-
work modules using a hierarchical clustering algorithm.[36,4] 
Scope exists for identifying stronger gene signatures that 
can exhibit higher classication performance of class labels 
and provide higher biological signicance and validation. In 
the WGCNA method, hierarchical clustering and dynamic 
tree cut are used to discover the densely connected gene 
module. The PCC values are transformed by considering 

the recently evaluated power, and then, the topological 
overlap measure (TOM)[37] is computed on the basis of the 
power of the PCC values. The transcript modules are iden-
tied on the basis of the dissimilarity score, that is, (=1-TOM 
score). The TOM value between two vertices (e.g., tran-
scripts) in an adjacency matrix is dened as follows.

By observing formula (3), the generalization of TOM can be 
expressed as follows.

Here, Y denotes the adjacency matrix of the nodes containing 
the rst nearest neighbours of each nodes, '|.|' symbol indicates 
the cardinality of the set, nbd1(j) signies the set of neighbours 
of j excluding itself (i.e., j), and nbd1(k) signies the set of neigh-
bours of k excluding itself (i.e., k), whereas |nbd1(j)∩nbd1(k)| 
refers to the number of common neighbours which are 
shared by the nodes j and k. A gene involved in more than 
one function might also exist in a dierent gene subnetwork 
and thus in dierent functions. However, with hierarchical clus-
tering, the overlaps between dierent subnetworks are avoid-
ed. In this study, we used a graph based model by detecting 
high cohesive clusters to overcome this issue. We collected 
data from The Cancer Genome Atlas (TCGA), and then found 
signicantly expressed genes using the Limma-voom tool. 
Thereafter, we identied the target genes for the signicantly 
expressed miRNAs. We only considered these signicantly ex-
pressed target genes for the analysis. The spectral clustering 
algorithm was then applied to nd the dense modules, and the 
silhoette index was calculated for each cluster. For the pur-
pose of emperical analysis we consider the cluster 2 as men-
tioned in Figure 4. We used three consecutive classiers to clas-
sify the class labels by using all the features belonging to the 
signature. Compared with the other signatures, mirna-mrna 
signature produced the highest accuracy across all the clas-
siers. Additionally, we conducted a gene enrichment analysis 
[Gene Ontology (GO) and pathway] to identify disease-relat-
ed pathways as well as GO terms for the participating genes 
belonging to the signature. Our framework may prove use-
ful for extracting integrated signatures for other microarrays/
RNASeq datasets for cancer or any other disease. Since the 
last two decades, gene signatures are widely used in omics 
data analysis. In this article, we propose a framework that can 
identify integrated modules and discuss their application in 
a prognosis study. In future research, we will consider the 
application of epigenetics (viz., methylation) to the existing 
framework. A recent study states that the epigenome con-
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tains contiguous regions denoted as dierentially methylated 
regions (DMRs) that are signicantly associated with numerous 
diseases.[22,23] Mallik et al.[24] conducted a comparative study of 
dierent DMR- nding methods; the results of this study might 
motivate our future work. Several types of gene signatures 
exist in the bioinformatics eld, such as the prognostic gene 
signature, diagnostic gene signature, and predictive gene 
signature. The term `prognostic' signies the prediction of the 
expected development (duration, description, and function) 
of the course of a disease. Hence, the prognostic gene signa-
ture is vital to the overall outcome of a disease, irrespective 
of therapeutic interference. These prognostic signatures are 
useful in several tissue-Specific cancers such as hepatocellu-
lar carcinoma,[25] leukemia,[26] and breast cancer.[27] The diag-
nostic gene signature acts as a biomarker that dierentiates 
the severity of phenotypes of analogous therapeutic condi-
tions into the mild, moderate, or severe stage based on an 
inception point.[28] A predictive gene signature predicts the 
outcome of therapeutic intervention and does not depend 
on the prognosis.[29] Hence, these signatures contain crucial 
information. Several highly ecient biological networks can be 
used to predict the new functionality of genes.[30] One of the 
most popular biological networks is GCN, where each node 
in the network denotes a gene. Based on the edge between 
the two genes (nodes in GCN) of the network, GCNs are of 
two types, namely, unweighted-GCNs (UGCNs) and weight-
ed-GCNs (WGCNs). In a UGCN, a threshold value is applied 
to the correlation coecient. If the correlation coecient value is 
higher than the threshold value, an edge must exist between 
two genes; otherwise, no edge is made. In a WGCN, the re-
sult depends on the choice of the threshold of the correlation 
coecient. Hence, the WGCN is a preferred network, where an 
edge exists between every pair of nodes, and the weights of 
the edges are determined by the correlation values between 
the corresponding nodes. Various techniques have been cur-
rently developed for multi-omics integration. Weighted con-
nectivity measure integrating co-methylation, co-expression 
and protein-protein interactions (WeCoMXP), based on the 
weighted connectivity measure, is an approach for integrat-
ing multi-omics data from the weighted normalized gene 
regulatory network to detect gene modules.[31] WeCoMXP is 
the most promising integration technique in which tri-omics 
pro-les (expression data, methylation data, and protein-
protein interactions) and hierarchical clustering are used to 
identify gene modules. Functional gene module detection 
(FGMD)[32] is another method for determining gene modules. 
In a previous study on FGMD, single omics (gene expression 
data) data were used from two platforms, RNA-Seq and mi-
croarray, for the same gene pairs and paired samples. First, 
the log2 ratios between the tumor samples and the average 
of normal samples were calculated. To identify functional 

gene modules, gene expression data of the microarray and 
RNA-Seq platforms were compared using the Pearson corre-
lation coecient (PCC) for the same gene pairs. Then, the gene 
expression network was constructed using the PCC values, 
and the gene pairs having higher PCC values were extracted. 
After extraction, hierarchical clustering was applied to the se-
lected gene pairs. The analogous modules based on the over-
lap ratio were combined using hierarchical clustering with 
the dynamic tree cut method.[33] Finally, the FGMD modules 
were identied. The double-label propagation clustering al-
gorithm (DLPCA) is a new algorithm for determining disease-
associated modules by using the gene expression dataset. 
In a previous study, DLPCA used the pathogenic records of 
genes as the properties of nodes from the GCN constructed 
using the WGCN analysis (WGCNA) tool.[34] Gene modules 
were constructed by applying a multilabel clustering algo-
rithm, followed by the DLPCA. During the module detection 
phase, the DLPCA classied the corresponding modules into 
diseased and non-diseased samples.[35]

Several well-known algorithms are used to identify a gene 
module, and many of them are developed to extract net-
work modules using a hierarchical clustering algorithm. 
Scope exists for identifying stronger gene signatures that 
can exhibit higher classication performance of class labels 
and provide higher biological signicance and validation. In 
theWGCNA method, hierarchical clustering and dynamic 
tree cut are used to discover the densely connected gene 
module. The PCC values are transformed by considering 
the recently evaluated power, and then, the topological 
overlap measure (TOM)[37] is computed on the basis of the 
power of the PCC values. The transcript modules are iden-
tied on the basis of the dissimilarity score, that is, (=1-TOM 
score). The TOM value between two vertices (e.g., tran-
scripts) in an adjacency matrix is defined as follows.

By observing formula (3), the generalization of TOM can be 
expressed as follows.

Here, Y denotes the adjacency matrix of the nodes contain-
ing the rst nearest neighbours of each nodes, '|.|' symbol 
indicates the cardinality of the set, nbd1(j) signies the set of 
neighbours of j excluding itself (i.e., j), and nbd1(k) signies 
the set of neighbours of k excluding itself (i.e., k), whereas  
|nbd1(j)∩nbd1(k)| refers to the number of common neigh-
bours which are shared by the nodes j and k. In other 
words, in TOM/GTOM, nal similarity score between two 
nodes has been computed based upon direct similarity 
between those two nodes and indirect similarity through 
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the dierent levels of nearest neighbours, whereas for other 
general similarity measures like Pearson`s correlation, this 
indirect similarity through neighbourhood is not there.[38]

A gene involved in more than one function might also ex-
ist in a dierent gene subnetwork and thus in dierent func-
tions. However, with hierarchical clustering, the overlaps 
between dierent sub-networks are avoided. In this study, 
we used a graph based model by detecting high cohesive 
clusters to overcome this issue. We collected data from The 
Cancer Genome Atlas (TCGA), and then found signicantly 
expressed genes using the Limma-voom tool. Thereafter, 
we identied the target genes for the signicantly expressed 
miRNAs. We only considered these signicantly expressed 
target genes for the analysis. The spectral clustering al-
gorithm was then applied to nd the dense modules, and 
the silhoette index was calculated for each cluster. For the 
purpose of emperical analysis we consider the cluster 2 as 
mentioned in Figure 4. We used three consecutive classiers 
to classify the class labels by using all the features belong-
ing to the signature. Compared with the other signatures, 
mirna-mrna signature produced the highest accuracy 
across all the classiers. Additionally, we conducted a gene 
enrichment analysis [Gene Ontology (GO) and pathway] to 
identify disease-related pathways as well as GO terms for 
the participating genes belonging to the signature. Our 
framework may prove useful for extracting integrated sig-
natures for other microarrays/RNA-Seq datasets for cancer 
or any other disease.
Algorithm 1 Identication of combined molecular signa-
tures from multi-omics data proles
Input: Gene expression data matrix (GDM, row = genes, 
columns = unpaired samples).
miRNA datamatrix (MDM, row = miRNAs,columns = un-
paired samples).
Output: Top ranked combined signatures, based on cen-
trality score by analysing the multi-omics network.
Algorithm:
/***Extraction and ltering of features from GDM and 
MDM***/
1: Selection of the common samples from GDM and MDM.
2: Identifying dierentially expressed genes (DEG) and dife-
rentially expressed miRNAs (DMR) w.r.t their fold change 
and p-values.
3: The target genes of DMR are identied.
4: The overlapping genes are obtained from DEG, and the 
target genes of DMR.
5: Selection of those down regulated genes that are nega-
tively correlated with the upregulated miRNAs.
/***Construction of the multi molecular network with 
the upregulated miRNA-downregulated mRNAs***/
6: Let N = (G;mR;E) is the network corresponding to multi-
omics data prole. Each node in the network is denoted by 

G if the node is gene and denoted by mR if the node is a 
miRNA.
A member of G is linked by an edge if there exists a positive 
correlation between them. Similarly, a member of mR and a 
member of G is linked by an edge if there exists a negative 
correlation between them.
/***Finding the correlation between each gene pair for 
G ***/

/***Finding the negative correlation between each 
miRNA-gene pair ***/

7: For the network N spectral clustering is applied.
8: For each gene and miRNA in each cluster degree central-
ity Dc is calculated,
9: Assigning rank to each miRNA in the network N based 
on the its Dc.
10: Among all the genes that are connected to the top 
ranked miRNA, we select those genes who have maximum 
degree centrality. Thus selecting the hub molecules from 
each clusters. By applying this approach we discovered top 
3 ranked combined signatures.
11: End of the Algorithm

Proposed integrated Signature Discovery 
Technique
In this article, we introduced a novel framework for detect-
ing dense modules and discussed their application in a 
prognosis survival study. We performed an integrative analy-
sis of the mRNA and miRNA from the TCGA Cervical cancer 
datasets. The steps of the method are described as follows.

Identication of Signicantly Expressed Transcripts
We rst chose the common sample IDs from the multi-omics 
(mRNA and miRNA) datasets and then collected the sub-
types of cervical cancer from the phenotype data for those 
sample IDs. Thereafter, the gene probes containing the miss-
ing values (i.e., NA values) and those with expression values 
of zero across all the samples in the dataset were eliminated 
to obtain the ltered dataset. We used the Limma method, a 
non-parametric test,[19] employing the empirical Bayes test 
to determine signicantly expressed gene probes and miR-
NAs because it performs very well for any distribution (nor-
mal or non-normal distribution) and for all sample sizes. The 
empirical Bayes approach causes a reduction of the estimat-
ed sample variance toward a pooled estimate, resulting in 
a more stable inference. The use of moderated t-statistics is 
more advantageous than that of the posterior odds because 
the number of hyperparameters that need to estimate is re-
duced. To avoid a large number of item sets resulting from 
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numerous genes, we considered only the top signicantly 
expressed genes and miRNAs by using the Limma statistical 
test and generated a list of genes sorted according to their p 
-values from signicant to insignicant. Thereafter, we assigned 
a weight to each gene and miRNA with respect to their p-
values. The t-statistics in Limma is described as follows.

The degree of freedom is D0+Dg, βg is the contrast estima-
tor, and S2

* ;g the posterior variance. Gene probes and miR-
NAs whose p-values were less than 0.05, as obtained us-
ing the empirical Bayes test, were considered as signicant 
gene probes and miRNAs, respectively. Simultaneously, we 
also considered fold change (FC) to identify signicant gene 
probes and miRNAs. FC is a measure for quantifying the ra-
tio of the mean score of the diseased samples to the mean 
score of the control samples. The FC value was used to ana-
lyze the changes in gene and miRNA expression between 
multiple normal and tumor samples. For upregulated gene 
probes (UG) and upregulated miRNAs (UMIR), the thresh-
old value of FC is 2 (i.e., FC 2), whereas for the downregulat-
ed gene probes (DG) and downregulated miRNAs (DMIR), 
the threshold value of FC is 0.5 (i.e., FC  0.5). In this manner, 
the UG), UMIR, DG, and DMIR were selected on the basis of 
p and FC values. The overview of the work ow of the pro-
posed method is presented in Figure 1.

MiRNA Target Detection Using SpirderMiR
Gene regulatory networks (GRNs) play a major role in vari-
ous biological processes, such as cell cycle, cell dierentia-
tion, signal transduction, and metabolism, during the path-
ological process. The dierences between GRNs in normal 

and pathological conditions may unveil the mechanisms 
underlying disease development. GRNs are split into some 
simple connections that describe how the network nodes 
interact. Users can integrate the miRNA{gene interaction 
into various network data, such as gene coexpression, ge-
netic interactions, physical interactions, and pathways. We 
provided the signicantly expressed miRNAs as inputs in the 
SpidermiR R tool[39] that consists of predicted miRNA{target 
gene interactions from eight external databases, namely, 
EIMMo, DIANA, miRanda, PITA, miRDB, MicroCosm, PicTar, 
and TargetScan, and validated miRNA-target gene interac-
tions from miRecords, miRTarBase, and TarBase. Once the 
integrated network data were prepared, we conducted the 
downstream analysis.

Detection of Integrative Signature Using Spectral 
Clustering
Gene expression is distinguished to be regulated by the as-
sociation between transcription factors (TFs) and upstream 
regulatory components of target genes.[40] Moreover, miR-
NAs expression can be started or repressed by TFs, which 
therefore can act as miRNA regulators.[41] Thus a change in 
miRNA expression could result from an alteration in tran-
scriptional activity. miR-17-5p and miR-20a which are the 
members of a cluster are dysregulated in cervical cancer.[42] 
Regulation of miRNAs by transcription factor has been stud-
ied only in rare studies and therefore it would be promising 
if important combined miRNAs and gene signature in cervi-
cal cancer are identied. We attempted to extract the mod-
ules with highly associated miRNAs and mRNAs. We built a 
network with upregulated miRNAs and its target genes. We 
considered those downregulated mRNAs that are negatively 
correlated with the upregulated miRNAs. As the network 
consist of two types of components, so there are two types 
of nodes representing miRNA and mRNA. There is an edge 
between two nodes (when two nodes are miRNA and mRNA) 
if there is a negative correlation between them, whereas an 
edge between two nodes (when two nodes are mRNAs) if 
there is a positive correlation between them. Spectral clus-
tering is a method in graph theory, where the technique is 
used to identify communities of nodes in a connected net-
work based on the edges connecting them. So in this study, 
we applied spectral clustering[43] on the entire miRNA-mRNA 
network. Once the integrated network data were prepared, 
we conducted the downstream analysis.

Combined Molecular Signature Discovery and 
Ranking
From the spectral clustering we found 4 clusters. Our aim 
was to detect those modules containing hub molecules. 
We applied network centrality measure on each molecule 
of the network and captured the high degree miRNAs with 
theirs associated high degree mRNAs.
The hub miRNA-mRNA modules are ranked and listed in 
Table 1. We ranked each combined module by looking at Figure 1. Flowchart of proposed combined signature nding Strategy.
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the degree centrality of each miRNA. In the interaction in 
the real world, we usually recognize people with numer-
ous connections to be central. Degree centrality conveys 
the same concept into a measure. The degree centrality of 
a node quanties the ranks of the node with more connec-
tions more leading in terms of centrality. The degree cen-
trality Dc for node Ni in an undirected graph is

where Degi is the degree i.e the total number of connect-
ed edges with node Ni. For a directed graph the degree 
centrality, say DirC is considered either the in-degree or 
the out-degree or the fusion of both (in-degree and out-
degree), i.e.,

When we are utilizing in-degrees, degree centrality esti-
mates how vital a node is and its value gives prominence 

or prestige, whereas out-degrees measure the gregari-
ousness of a node. When we joining in-degrees and out-
degrees, we are neglecting the edge directions, i.e., we 
are considering the undirected graph and the Equation.11 
turns into Equation 8. Figure 2 is presenting a sample of an 

Figure 2. Sample graph for degree centrality.

Table 1. Degree-centrality based cluster Specific top combined signature for Cervical Cancer.

CI	 SI		  Cluster		  Combined signature	 Rank	 Protein Class from
			   Elements with				    Human
			  Degree centrality				    Protein Atlas

1	 0.85	 hsa-mir-34c		  9	 fhsa-mir-34c->	 1	 DRD2: FDA approved
		  BMP3		  1	 DRD2, HNF4Ag		  drug targets, G-protein
		  DRD2		  7			   coupled receptors,
		  HNF4A		  7			   transporter
		  SIX3		  1			   HNF4A: Disease-related
		  TRIM10		  1			   genes, Nuclear receptors,
		  CAPN9		  1			   and transcription factors
		  CPLX2		  1
		  FBXO16		  1
		  PALM3		  1
1	 0.85	 hsa-mir-137		  7	 fhsa-mir-137->	 2	 SLC39A5: Disease related
		  ALPPL2		  1	 TOX3, SLC39A5g		  genes, Potential drug targets
		  AQP2		  1			   transporters
		  FGF9		  1			   TOX3: Transcription factors
		  DLGAP1		  1
		  TOX3		  13
		  SLC39A5		  9
		  SHISA9		  1
2	 0.96	 hsa-mir-944		  6	 fhsa-mir-944-> IYDg	 3	 IYD: Disease related genes,
		  CFTR		  1			   enzymes, and potential
		  GABRB2		  1			   drug targets
		  HNF4G		  1
		  TAC1		  1
		  C7orf57		  1
		  IYD		  7

SI represents Silhoutte Index; CI denotes Cluster Index.
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undirected graph G1. G1 cosists of 5 nodes (N1, N2, N3, N4, 
and N5). Where degree centrality Dc of each node is as fol-
lows Dc(N1) = 3;Dc(N2) = 3;Dc(N3) = 3;Dc(N4) = 3, and Dc(N5) = 
4. As a result, node N5 is most important in the graph as it is

having highest degree centrality.

Implementation and Data Availability

Here we elaborated the information of such datasets that 
we utilized in this study, viz., gene expression (Illumina-
HiSeq) dataset, miRNA expression dataset and clinical 
data containing phenotype information for Cervical can-
cer (CESC). Then we demonstrated the outcome of our 
experiment. We downloaded CESC gene expression data 
(Illumina-HiSeq), miRNA expression data (Illumina-HiSeq) 
and clinical data containing phenotype information from 
the TCGA database by using UCSC Xena browser (https://
xenabrowser.net/datapages/). CESC gene expression and 
miRNA expression data sets contained a total of 275 sam-
ples. We extracted those sample IDs that are common in 
both data sets. From the clinical matrix, we obtained the 
phenotype information like patient survival time, survival 
status, cervical cancer subtypes, etc. As there exist few 
number of control samples in the TCGA CESC dataset, so 
we considered two subtypes of CESC as two groups, viz., 
Endocervical type of Adenocarcinoma (ADENO) and Cervi-
cal Squamous Cell Carcinoma (SCC) for our experiment. The 
total number of samples in ADENO and SCC are 22 and 253, 
respectively.

Results
Initially, the gene expression prole contained a total of 
20,530 gene probes, while the miRNA expression prole 
contained 1,046 miRNAs. There was a total of 313 samples 
in the phenotype data (the clinical matrix) among which 
308 samples were common in both mRNA and miRNA ex-
pression proles. We omiited the invalid features (genes). 
After ltering, we had a total of 20,501 genes and 275 sam-
ples of which the number of ADENO samples was 22, while 
the number of SCC samples was 253. Hence, a total of 275 
samples were considered for the experiment, while after 
re-ltering, we obtained a total of 19,685 genes and 889 
miRNAs. Next, we identied the signicantly expressed genes 
by applying Limma statistical test as mentioned in section 
2.1 on the dataset. Intuitively, the total number of signicant 
genes in the dataset was found as 580. Of note, since no 
normal sample was available in the dataset, we considered 
the eect of one subtype versus others through the statisti-
cal test. While we tried to measure the eect of SCC over AD-
ENO, we obtained 259 over-expressed genes in SCC. On the 
other hand, to measure the eect of ADENO over SCC, we 
identied 321 over-expressed genes in ADENO. In addition, 
we identied 20 signicantly expressed miRNAs in the miRNA 
datasets of which 11 miRNAs were overexpressed in SCC, 
and the remaining 9 miRNAs were over-expressed in AD-
ENO. The voom:mean-variance trend plot for the gene ex-
pression data and miRNA expression data were presented 
by Figure 5(a) and Figure 5(b), respectively.

The volcano plots in Figure 5(c) and Figure 5(d) represented 
the signicantly expressed genes and signicantly expressed 
miRNAs, respectively. The over-expressed genes/miRNAs in 
SCC were represented in red color while the over-expressed 
genes/miRNAs in ADENO were illustrated in green color in 

Figure 3. miRNA-mRNA integrated clusters through spectral cluster-
ing, where dotted line indicates hub nodes (hub miRNAs here.

Figure 4. Silhouette plot for the 4 clusters.
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the volcano plot. The boxplot on both the gene expression 
data before and after Voom transformation were shown in 
Figure 6 (a) and Figure 6 (b), respectively.

In this study we considered two subtypes of CESC as there 
were few number of control samples. As a result, we ob-
tained 9 upregulated miRNAs and 40 downregulated 
genes. The genes were also predicted target genes and 
negatively correlated with those overexpressed miRNAs 
(Table 4). For our experiment we constructed an integrated 
network with these 9 miRNAs and 40 mRNAs. After apply-
ing spectral clustering on the integrated network 4 inte-
grated clusters were found (Fig 3). As we can see from the 
silhouette plot in Figure 4, the silhoette index of cluster 
1,2,3, and 4 were 0.85, 0.96, 1, 1 respectively. It was noted 
from the network Figure 3 cluster 1 contains 2 and cluster 2 
contains 1 hub miRNAs (based on its degree centrality) re-
spectively demarcated with dotted oval. Table 1 represent-
ing the summary of network in Figure 3. From the degree 
centrality of miRNAs and its associated genes we ranked 

each signature. As the cohesiveness of cluster-2 was very 
high, and also contained a combined signature, we con-
ducted geneset enrichment analysis and pathway analysis 
for cluster-2 separately.

Cluster Specific Combinatorial Fused Signature 
Analysis
After finding the cluster, we focused on extracting the com-
bined molecular signature. In Table 1 the cluster index sig-
nies in which cluster the bio molecules belong to.The color 
of each cluster are depicted in miRNA-mRNA target net-
work (Fig. 3). We performed a network analysis after apply-
ing the spectral clustering on the network. In the Orange 
colored cluster (cluster-1) the miRNAs hsa-mir-34c and hsa-
mir-137 were demarcated with dotted oval. The highest 
ranked miRNA in cluster-1 is hsa-mir-34c as its degree cen-
trality is the highest among the other miRNAs within the 
cluster. The associated target genes with highest in-degree 
are DRD2, and HNF4A. Intuitively, a combine biomolecular 
signature {hsa-mir-34c->DRD2,HNF4A} was formed in clus-
ter-1. Similarly, the second highest ranked signature was 
{hsa-mir-137->TOX3, SLC39A5} in cluster-1. Another com-
bined signature {hsa-mir-944->IYD} was selected in clus-
ter-2 the blue colored cluster in Figure 3. We searched for 
annotation and protein class(Human Protein Atlas1) of ev-
ery gene belonging to the top 3 ranked signatures. In {hsa-
mir-34c->DRD2,HNF4A}, we found DRD2 is a FDA-approved 

1https://www.proteinatlas.org/

Figure 5. (a) Voom: Mean-Variance trend plot during the extraction 
of signicantly expressed genes in Adenocarcinoma vs Squamous 
cell carcinoma, (b) Voom: Mean-Variance trend plot during the ex-
traction of signicantly expressed miRNA in Adenocarcinoma vs Squa-
mous cell carcinoma, (c) Volcano plot for nding signicantly expressed 
genes in Adenocarcinoma vs Squamous cell carcinoma, (d) Volcano 
plot for nding signicantly expressed miRNA in Adenocarcinoma vs 
Squamous cell carcinoma.

Figure 6. (a) Performing the Box plots before and after Voom nor-
malization while extracting the signicantly expressed genes. (b) Per-
forming the Box plots before and after Voom normalization while 
extracting the signicantly expressed microRNAs.
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drug target, and encodes the D2 subtype of the dopamine 
receptor. Also it functions as a G-protein coupled receptor. 
The protein encoded by HNF4A controls the expression of 
various genes, including hepatocyte nuclear factor 1 alpha, 
a transcription factor that regulates the expression of dier-
ent hepatic genes. Diseases associated with HNF4A include 
Type 1, Maturity-Onset Diabetes. Also, it plays a vital role in 
the development of the liver, kidney, and intestines. Muta-
tions in HNF4A are associated with monogenic autosomal 
dominant non-insulin-dependent type I diabetes melli-
tus. Whereas, miRNA hsa-mir-34c is associated with cervi-
cal cancer. The downregulated expression of hsa-miR-34c 
is associated with a small increase in cellular proliferation 
and a signicant growth in cell migration.[44] As a result, the 
signature {hsa-mir-34c->DRD2,HNF4A} should have a vital 
role in cervical cancer. In {hsa-mir-137->TOX3, SLC39A5} we 
found the gene SLC39A5 is associated with Myopia, Auto-
somal Dominant. The associated pathways are Transport of 
glucose and bile salts, other sugars, metal ions and Metal 
ion SLC transporters. Where TOX3 is an important regulator 
of calcium-dependent transcription that employ its eect on 
CRE-mediated transcription with the CREB{CBP complex.[45]

The upregulation of MiRNA hsa-miR-137 suppresses the tu-
mor progression in Cervical Cancer by blocking the Trans-
forming growth factor (TGF-) pathway.[46] Consequently, the 
combined signature {hsa-mir-137->TOX3, SLC39A5} might 
play an signicant role in Cervical cancer. On the other hand 
in the rank-3 signature {hsa-mir-944->IYDg, IYD has been 
found as a FDA-approved drug target. Also, it encodes an 
enzyme that catalyzes the oxidative NADPH-dependent 
deiodination of mono as well as di-iodotyrosine, which 
are the halogenated by products of thyroid hormone pro-
duction. Mutations in this gene can produce congenital 
hypothyroidism due to dyshormonogenesis type-42. In a 
study,[47] an association has been identied between high 
expression levels of hsa-mir-944 and expression levels of 
HPV in HPV-positive cervical cancer cells with TCGA data-
set. Hence, the signature {hsa-mir-944->IYD} should have 
an in uence in progress of cervical cancer.

Emperical Analysis and Classication Accuracy of 
Cluster-2
We considered the the evolved genes and miRNAs (fea-
tures) belonging to the cluster 2, and then applied the 
cross-validation technique and several classiers to classify 
the groups (diseased or control) toward the samples. We 
computed the area under the curve (AUC) for each classier 
for the evolved integrated signatures obtained using our 
proposed method as well as we compared the perfor-

mance by individually measuring the performance with 
miRNAs and mRNAs (Fig. 8). We plotted ROC curve (Fig. 7) 
(receiver operating characteristic curve) for showing the 
performance of the classication model.

Gene Set Enrichment Analysis of Cluster-2 Using 
ShinyGO
We conducted the pathway and GO analysis and selected 
pathways and GO terms having a signicant enrichment 
score (p-value<0.05). We then highlighted pathways and 
GO terms that were associated with participating genes 
belonging to the signature. Intuitively, we obtained a 
combined signature consisting of genes and one miRNAs: 
CFTR, GABRB2, TAC1, c7orf57, HNF4G, and hsa-mir-944. 
Furthermore, we conducted pathway and Gene Ontology 
(GO) analyses using the Shiny GO http://bioinformatics.sd-
state.edu/go/. Here, we observed that the genes belong-
ing to the cluster-2 followed several signicant biological 
processes, as mentioned in Table 2; e.g., the genes CFTR, 
TAC1, GABRB2, and HNF4G were involved in Response to 

Figure 7. From (a) - (c) ROC curve through the use of multiple class-
iers (viz., SVM, RF and KNN) with the integrated signature.

Figure 8. Comparative study of area under curve (AUC) scores 
through the use of multiple classiers (viz., SVM, RF and KNN).

2https://www.ncbi.nlm.nih.gov/gene/389434
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Table 2. Enriched GO-terms associated with the evolved genes in cluster 2.

	 Name of the High level GO category	 p	 Name of the Groups	 # Associated	 Genes 
			   of GO	  Genes	

	 Response to organic cyclic compound	 0.001462	 Biological process	 4	 CFTR, TAC1, GABRB2, HNF4G
	 Regulation of membrane potential	 0.001683	 Biological process	 3	 GABRB2, CFTR, TAC1
	 Synaptic transmission, GABAergic	 0.001683	 Biological process	 2	 TAC1, GABRB2

	 Cellular response to endogenous stimulus	 0.001683	 Biological process	 4	 CFTR, TAC1, GABRB2, HNF4G

	 Chloride transmembrane transport	 0.00225	 Biological process	 2	 CFTR, GABRB2

	 Response to endogenous stimulus	 0.00225	 Biological process	 4	 CFTR, TAC1, GABRB2, HNF4G

	Cellular response to organic cyclic compound	 0.00225	 Biological process	 3	 CFTR, GABRB2, HNF4G

	 Inorganic anion transmembrane transport	 0.002735	 Biological process	 2	 CFTR, GABRB2

	 Chloride transport	 0.002735	 Biological process	 2	 CFTR, GABRB2

	 Positive regulation of hormone secretion	 0.003175	 Biological process	 2	 CFTR, TAC1

	 Response to ammonium ion	 0.003175	 Biological process	 2	 TAC1, GABRB2

	 Monovalent inorganic cation homeostasis	 0.003824	 Biological process	 2	 CFTR, TAC1

	 Inorganic anion transport	 0.004249	 Biological process	 2	 CFTR, GABRB2

	 Response to organonitrogen compound	 0.005033	 Biological process	 3	 CFTR, TAC1, GABRB2

	 Response to lipid	 0.005033	 Biological process	 3	 CFTR, TAC1, HNF4G

	 Response to nitrogen compound	 0.006322	 Biological process	 3	 CFTR, TAC1, GABRB2

	 Organic hydroxy compound transport	 0.006515	 Biological process	 2	 CFTR, TAC1

	 Cellular response to organic substance	 0.006515	 Biological process	 4	 CFTR, TAC1, GABRB2, HNF4G

	 Anion transmembrane transport	 0.007212	 Biological process	 2	 CFTR, GABRB2

	 Regulation of hormone secretion	 0.007212	 Biological process	 2	 CFTR, TAC1

	 Lipid transport	 0.009323	 Biological process	 2	 CFTR, TAC1

	 Hormone transport	 0.009323	 Biological process	 2	 CFTR, TAC1

	 Response to organic substance	 0.009323	 Biological process	 4	 CFTR, TAC1, GABRB2, HNF4G

	 Hormone secretion	 0.009323	 Biological process	 2	 CFTR, TAC1

	 Cellular response to chemical stimulus	 0.009323	 Biological process	 4	 CFTR, TAC1, GABRB2, HNF4G

	 Lipid localization	 0.010782	 Biological process	 2	 CFTR, TAC1

	 Positive regulation of secretion by cell	 0.012745	 Biological process	 2	 CFTR, TAC1

	 Cell-cell signaling	 0.013507	 Biological process	 3	 GABRB2, CFTR, TAC1

	 Positive regulation of secretion	 0.013507	 Biological process	 2	 CFTR, TAC1

	 Signal release	 0.01375	 Biological process	 2	 CFTR, TAC1

	 Chloride channel complex	 0.001464053	 Cellular Component	 2	 CFTR, GABRB2

	 Ion channel complex	 0.014161241	 Cellular Component	 2	 CFTR, GABRB2

	 Transmembrane transporter complex	 0.014161241	 Cellular Component	 2	 CFTR, GABRB2

	 Transporter complex	 0.014161241	 Cellular Component	 2	 CFTR, GABRB2

	 Ligand-gated anion channel activity	 0.000146823	 Molecular function	 2	 GABRB2, CFTR

	 Anion channel activity	 0.001149013	 Molecular function	 2	 CFTR, GABRB2

	 Chloride channel activity	 0.001149013	 Molecular function	 2	 CFTR, GABRB2

	Chloride transmembrane transporter activity	 0.001149013	 Molecular function	 2	 CFTR, GABRB2

	 Ligand-gated ion channel activity	 0.001293524	 Molecular function	 2	 GABRB2, CFTR

	 Ligand-gated channel activity	 0.001293524	 Molecular function	 2	 GABRB2, CFTR

	 Inorganic anion transmembrane transporter	 0.001352648	 Molecular function	 2	 CFTR, GABRB2 
	 activity
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endogenous stimulus (already identied in an earlier study 
[48]). TAC1, GABRB2, CFTR were associated with the Regula-
tion of biological quality(earlier found in [49]). CFTR, TAC1 
followed the Reproduction, Response to stress, Sexual re-
production, Reproductive process, Regulation of signaling, 
Regulation of localization, Macro-molecule localization, 
Multi-organism reproductive process, Multicellular organ-
ism reproduction, and Regulation of response to stimulus, 
and Multi-organism process were associated with cervical 
cancer, already known in literature.[50-58] GABRB2, and TAC1 
were linked in Cellular component biogenesis. In contrast, 
the genes CFTR, and GABRB2 were associated with the cel-
lular component Chloride channel complex, Ion channel 
complex, Transporter complex, and Transmembrane trans-
porter complex. There were some important molecular 
functions in which genes CFTR, and GABRB2 were involved. 
The functions were Ligand-gated anion channel activity, 
Anion channel activity, Chloride channel activity, Chloride 
transmembrane transporter activity, Ligand-gated ion 
channel activity, Inorganic anion transmembrane trans-
porter activity, Anion transmembrane transporter activ-
ity, Gated channel activity, Ion gated channel activity, Ion 
channel activity, Channel activity, Passive transmembrane 
transporter activity, Substrate-Specific channel activity, 
Inorganic molecular entity transmembrane transporter ac-
tivity, Ion transmembrane transporter activity, Transmem-
brane transporter activity, and Transporter activity. Of note, 
gene HNF4G involved in the pathway Maturity onset dia-
betesof the young, Gene GABRB2 and TAC1 were associat-
ed with Neuroactiveligandreceptorinteraction, gene CFTR 
involved in Bile secretion, Pancreatic secretion and AMPK 
signaling pathway (Table 3).

Survival Analysis
Survival analysis is one of the key statistical methods for 
exploring data on time to the occurrence of an event of in-
terest, such as death, or time to failure of a device. It can 
be applied to many aspects such as estimating the year of 
death, evaluating the reliability of a product, and measur-
ing the capability of medical therapies. Survival analysis is 
dicult to perform in cases with undetectable or inexistent 
outcomes in the observation period. This type of event 
is called as censoring that can be dealt with the survival 
analysis strategy and is required to perceive how well the 
signature predicts the survival time for the patients in the 
respective clinical dataset.

In this study, we applied the Cox proportional-hazards re-
gression (coxph R) package[59] to investigate the associa-
tion between the survival time of the patients and one or 
more predictor variables, considering the gene expression 
prole of only the identied resultant module . We computed 
the Z-score for each gene to produce high- and low-risk 
patient groups. The dierence in survival time between the 
two groups of patients was determined using the Kaplan-
Meier estimator as well as the log-rank method. Genes in 
the modules were associated with the patient survival time 
in particular cancer. We predicted the patient survival time 
for each gene belonging to the resultant signature on the 
basis of gene expression and classied the patients into 
high- and low-risk groups, in whom the survival time was 
signicantly dierent p-value<0.05. The same procedure was 
followed for all the genes belonging to the cluster 2, and 
the frequency of a signicant p-value was obtained.

In addition, we explored the survival prognosis analysis for 

Table 2. CONT.

	 Name of the High level GO category	 p	 Name of the Groups	 # Associated	 Genes 
			   of GO	  Genes	

	 Anion transmembrane transporter activity	 0.005033167	 Molecular function	 2	 CFTR, GABRB2

	 Gated channel activity	 0.005033167	 Molecular function	 2	 GABRB2, CFTR

	 Ion gated channel activity	 0.005033167	 Molecular function	 2	 GABRB2, CFTR

	 Ion channel activity	 0.00634347	 Molecular function	 2	 GABRB2, CFTR

	 Channel activity	 0.00634347	 Molecular function	 2	 GABRB2, CFTR

	 Passive transmembrane transporter activity	 0.00634347	 Molecular function	 2	 GABRB2, CFTR

	 Substratespeci c channel activity	 0.00634347	 Molecular function	 2	 GABRB2, CFTR

	 Inorganic molecular entity transmembrane	 0.018378207	 Molecular function	 2	 GABRB2, CFTR 
	 transporter activity	

	 Ion transmembrane transporter activity	 0.020043027	 Molecular function	 2	 GABRB2, CFTR

	 Transmembrane transporter activity	 0.027244201	 Molecular function	 2	 CFTR, GABRB2

	 Transporter activity	 0.035929585	 Molecular function	 2	 CFTR, GABRB2
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the genes belonging to cluster-2. For survival analysis, we 
used Cox proportional hazards regression model to predict 
the survival time of the underlying patients (dead or alive). 
For the living and deceased patients, we extracted the days 
from the last follow-up time and overall survival time, re-
spectively. In Fig.9 we obtained Cox regression p-value for 
each gene and miRNA in cluster-2. Among them, we ob-
tained 5 signicant p-values (<0.05), while one was insigni-
cant. E.g., for the gene TAC1, the p-value was 0.014 (signi-
cant). Similarly, in the case of the gene HNF4G, the p-value 
was 0.0071 (signicant), whereas, for the miRNA hsa-mir-944 
the p-value was 0.017(signicant). For the gene CFTR and 
c7orf57 the p values were 0.028 and 0.038 respectively. 
For these individual gene and miRNA wise survival analy-
ses, the corresponding plots were illustrated in Figure 9(a)-
(f ). Overall, since we found the signicant p-values for the 
individual survival cases, it implies that our experimental 
cluster was powerful enough to say clinically promising. In 
addition, we carried out the performance analysis of the 
same cluster (i.e., cluster-2) by estimating the prediction 
accuracy of the cervical cancer subtypes (Adenocarcinoma 
and Squamous cell carcinoma). Hence, we provided here 
a comparative study of the AUC score of the elements in 
cluster-2 with mRNA and miRNA signatures individually, 
found by applying our method. For two-class classication, 
we used Support Vector Machine (SVM), Random Forest 
(RF) and K-Nearest Neighbors (KNN) classiers. In contrast, 
the Area under the Curve (AUC) was used as a performance 
metric. We obtained the highest AUC values (>0.95) for the 

cluster-2 estimated by our proposed method. The clas-
sication accuary was performed using Caret R Package.[60] 
Figure 8 represented the comparative analysis. Finally, our 
proposed method produced the best AUC score to classify 
the cervical cancer subtypes among the other two types 
(with mRNA and miRNA) signatures. Moreover, our method 
is useful and powerful enough to identify a molecular sig-
nature from RNA-seq or similar data.

Discussion and Conclusion
Investigating the association between transcriptomic de-
tails is essential to understand the functionalities of the 
biological process. Recent innovations have made it con-
ceivable to perform multi-omics proling, including gene 
expression and miRNA expression. However, the integra-
tive analysis of heterogeneous information provides bio-
logically relevant information more precisely rather than 
the analysis with a single omic prole. Nowadays, most of 
the existing methods for integrating multi-omics proles 
apply hierarchical clustering indicating the relationship 
the omics proles. Since the hierarchical clustering does not 
consider the overlapping modules, there is a chance of los-
ing important information. The combined signatures, used 
a network based model to determine the cluster Specific 
signatures. Overall, it possesses multiple unique advantag-
es: (i) It provides a novel strategy for the integrative analysis 
of gene and miRNA expression data. (ii) It is progressively 
more potent than present-day techniques since the AUC 
scores of it are the highest across the three classiers pre-
sented in Figure 8. (iii) The resultant signature was found 
clinically validated since most of the members in the sig-
nature produced signicant p-value in cox regression-based 
survival analysis. In this article, we developed a new frame-
work to extract dense modulebased integrative signature 
detection technique and their application in prognosis sur-
vival study. We used a cervical cancer data repository with 
clinical prognosis data to perform our experiment. At rst, 
we applied Empirical Bayes test using Limma method to 
determine dysregulated genes (or, dysregulated miRNAs). 
MiRNA-mediated dysregulated target genes were identied 
from those dysregulated miRNAs. Next, we detected dense 
modules using spectral clustering technique. The cluster 
that contained the highest silhouette index (=0.96) was 
considered as the cluster for our analysis. MiRNA-mRNA 
signature produced the best AUC values (>=0.95 for all 
classiers) for our resultant signature in compared to the in-
dividual signatures (as presented in Fig. 8). Our proposed 
method is ecient and useful to identify a molecular signa-
ture for any RNA-seq or similar prole.

The possible direction of our future work will lead to con-
sidering the apply this method in the study of epigenetics, 

Figure 9. From (a) - (f) Survival analysis of each molecule of the Sig-
nature: Kaplan-Meier plots and Log-Rank Test p-values comparing 
overall survival times.
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specially methylation. Interestingly, in a recent study, it has 
been observed that contiguous regions exist in the epig-
enome denoted as dierentially methylated regions (DMRs) 
which are signicantly associated with the various diseases.
[22-23] In addition, We found the comparative study of vari-
ous DMR nding methods in[24] that might motivate us to 
extend our future work.
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