
Polymorphisms in COMT and SULT1A1 Genes and Chronic 
Lymphocytic Leukemia Risk in Estonia

Chronic lymphocytic leukemia (CLL) is a heterogeneous 
malignancy with a high variability in clinical presenta-

tions affecting mainly the elderly with mean age at diagno-
sis of nearly 70 years.[1, 2] With annual incidence of 3-5 cases 
per 100000 persons, CLL is the most common leukemia 
in adults of the Western world revealing about two-fold 
higher incidence rate in males than females.[3, 4] This disease 
is characterized by the clonal proliferation of the mature 
CD5/CD19 lymphocytes in the bone marrow, blood, and 
lymphoid tissues, such as lymph nodes and spleen.[2] De-

spite several efforts made in the last decades in evolution 
of new treatment strategies, including development of an-
ti-CD20 antibodies-based immunochemotherapy options, 
Bruton`s tyrosine kinase inhibitors and phosphoinositide 
3-kinase inhibitors, CLL is still considered an incurable dis-
ease.[1, 2, 4] Therefore, seeking further and more effective ap-
proaches are highly needed to attain the eventual goal of 
curing CLL. In parallel, development of strategies to select 
at-risk individuals using appropriate biomarkers is also im-
portant. 

Objectives: Studies investigating associations between common polymorphisms in phase II metabolic enzymes COMT 
and SULT1A1 and the risk of various cancer types have revealed inconsistent and controversial results, with no attention 
turned to date to the most common adult leukemia type, i.e., chronic lymphocytic leukemia.
Methods: In this small case-control study with 47 cases and 50 controls, the role of two functional polymorphisms, 
Val158Met in COMT gene and Arg213His in SULT1A1 gene affecting the activity level of respective enzymes, was stud-
ied on the susceptibility to chronic lymphocytic leukemia in an Estonian cohort.
Results: Although statistically non-significant (p>0.05), the suggestive reduction in disease risk observed with low 
activity enzyme variants could indicate the involvement of O-methylation and sulfation of various endogenous and 
exogenous substances in the process of leukemogenesis. The odds ratio (OR) for Met158Met genotype of COMT was 
0.60 with 95% confidence interval (95% CI) 0.20-1.82 compared to the wild type Val158Val genotype and the OR for 
His213His genotype of SULT1A1 was 0.58 with 95% CI 0.20-1.71 compared to the wild type Arg213Arg genotype.
Conclusion: Further large-scale studies are highly needed to confirm or disprove the findings of the present study and 
determine genetic risk factors for chronic lymphocytic leukemia.
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conjugation

 Katrin Sak,1  Kristi Kasemaa,1  Hele Everaus1,2

1Department of Hematology and Oncology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
2Clinic of Hematology and Oncology, Tartu University Hospital, Tartu, Estonia

Abstract

DOI: 10.14744/ejmo.2019.51146
EJMO 2019;3(4):281–288

Research Article

Cite This Article: Sak K, Kasemaa K, Everaus H. Polymorphisms in COMT and SULT1A1 Genes and Chronic Lymphocytic 
Leukemia Risk in Estonia. EJMO 2019;3(4):281–288.

Address for correspondence: Katrin Sak, PhD. NGO Praeventio, Tartu, Estonia
Phone: +372 53 341 381 E-mail: katrin.sak.001@mail.ee

Submitted Date: September 03, 2019 Accepted Date: October 27, 2019 Available Online Date: November 13, 2019
©Copyright 2019 by Eurasian Journal of Medicine and Oncology - Available online at www.ejmo.org
OPEN ACCESS  This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

https://orcid.org/0000-0003-0736-2525


282 Sak et al., Role of SNPs in COMT and SULT1A1 on CLL Risk / doi: 10.14744/ejmo.2019.51146

It has been previously suggested that genetic changes in 
metabolic enzymes can be potentially important in car-
cinogenesis process and certain polymorphisms in genes 
encoding these enzymes might be considered as disease 
biomarkers. However, only very few association studies are 
still focused on hematological malignancies.[5, 6] 

Catechol-O-methyltransferase (COMT, EC 2.1.1.6) is a phase 
II enzyme that metabolizes various compounds with cate-
cholic structure.[6] Dr. Julius Axelrod described this enzyme 
first in 1958[7] and nowadays it is generally accepted that 
COMT plays an important role in the O-methylation and 
detoxification of various catechols, including endogenous 
catechol estrogens and catecholamines, but also cate-
chol-containing exogenous substances.[8–11] This enzyme 
catalyzes the transfer of a methyl moiety from S-adeno-
sylmethionine to one of the hydroxyl groups on catechol 
compound.[12, 13] A single COMT gene encodes two forms 
of COMT enzymes, a membrane-bound protein with 271 
amino acid residues and a soluble cytoplasmic protein with 
221 amino acid residues, whereas the majority of COMT is 
present in the soluble form in human tissues apart from 
brain where COMT exists in membranous variant.[14–16] 
Although expression of COMT is highest in kidney and liver, 
it can be detected practically in all human tissues.[12, 17] In 
1995, a genetic change of guanine (G) to adenine (A) in the 
exon 4 of COMT gene was described by Lotta et al result-
ing in amino acid replacement of valine (Val) to methion-
ine (Met) in codon 158 in membrane-bound variant and at 
position 108 in soluble enzyme form.[18–21] This single nu-
cleotide polymorphism (SNP; rs4680) was found to control 
the activity of COMT enzyme inducing high-, intermediate- 
and low-activity enzyme phenotypes, whereas the change 
Val158Met has been related to two- to fivefold reduction 
in the activity level of COMT.[15, 20, 22, 23] Thus, subjects carry-
ing two Met alleles (Met158Met) exhibit considerably re-
duced ability to O-methylate various catechols resulting in 
an increase in circulating catechol-containing substances 
compared to the wild type individuals with two Val alleles 
(Val158Val); heterozygotes (Val158Met) have intermediate 
enzyme activity.[12, 17, 24, 25]

Sulfotransferase (SULT) 1A1 (EC 2.8.2.1) is another phase II 
enzyme that mediates sulfation of various compounds with 
phenolic structure.[5] This enzyme catalyzes the transfer of 
sulfonyl group from 3`-phosphoadenoside-5`-phospho-
sulfate to a wide variety of phenolic substances, including 
endogenous estrogens and thyroid hormones, but also dif-
ferent exogenous agents.[5, 26] The SULT1A1 enzyme is a 295 
amino acid protein being expressed in the majority of hu-
man tissues.[26–28] The most common polymorphic change 
in SULT1A1 (rs9282861) consists of G to A nucleotide transi-
tion at position 638 in exon 7 leading to an arginine (Arg) to 

histidine (His) replacement at amino acid 213.[29–31] At that, 
subjects homozygous to variant His alleles (His213His) re-
veal only approximately 15% of enzyme activity compared 
to those with wild type SULT1A1 form (Arg213Arg).[28, 31, 32] 
As sulfation results in more polar compounds with pro-
moted elimination from the human body, this process is 
generally considered a detoxification pathway.[33, 34]

To investigate the possible involvement of metabolic en-
zymes in development of chronic lymphocytic leukemia, 
a small-scale case-control study on association between 
functional polymorphisms in COMT and SULT1A1 enzymes 
and the risk of CLL was performed in Estonian population.

Methods

Study Subjects
This case-control study was conducted in Tartu, Estonia. 
Cases were individuals (n=47) with clinically confirmed 
diagnosis of CLL treated in the Clinic of Hematology and 
Oncology, Tartu University Hospital. Controls (n=50) were 
recruited from medical staff as well as healthy subjects vis-
iting the same hospital for examination of hereditary can-
cer risk. All participants were older than 45 years in the time 
of blood collection and were recruited during 2011-2016. 
The research protocol was approved by the Research Ethics 
Committee of the University of Tartu (Approval 245/T-4). A 
written informed content was obtained from each subject. 

Isolation of Peripheral Blood Mononuclear Cells 
(PBMC), B Cells and Non-B Cells
Peripheral blood samples (10 ml) were collected from all 
CLL patients and healthy volunteers. Mononuclear cells 
were isolated from heparinized venous blood by density-
gradient centrifugation by using Ficoll separation method. 
Ficoll-PaqueTM Premium was purchased from GE Health-
care Bio-Sciences AB (Uppsala, Sweden). Only freshly iso-
lated normal PBMCs were used for further separation of B 
cells and non-B cells. B cells were isolated from PBMCs us-
ing the human B-CLL Cell Isolation Kit obtained from MACS 
Miltenyi Biotec (Auburn, CA, USA). At that, the fraction of 
non-B cells was also collected. 

DNA Separation and Genotyping
As tumoral B cells can contain CLL specific genetic changes, 
the genomic DNA was isolated from non-B cell fraction of 
PBMCs using QIAamp DNA Mini Kit protocol (Qiagen, Inc., 
Chatsworth, CA, USA). The PCR reaction was carried out in 
the volume of 20 μl, containing 1 μl of genomic DNA, 4 μl of 
5x HOT FIREPol Blend Master Mix Ready to Load (Solis Bio-
dyne, Tartu, Estonia) and 0.8 μl of 10 μM primer solutions. A 
111 bp fragment of COMT was amplified by using the fol-
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lowing primers: forward 5´-GGCTCATCACCATCGAGATCAA-
3´and reverse 5´-CCAGGTCTGACAACGGGTCA-3´. A 287 bp 
fragment of SULT1A1 was amplified by using the following 
primers: forward 5´-TTGGCTCTGCAGGGTTTCTA-3´and re-
verse 5´-GGAGATGCTGTGGTCCATGA-3´. PCR primers were 
synthesized in Metabion (Planegg/Steinkirchen, Germany). 
The PCR reaction was performed as follows: 1 cycle of 5 min 
predenaturation at 94 0C, then 45 cycles of 30 s at 95 0C, 30 
s annealing at 61 0C, 30 s extension at 72 0C, and followed 
by 1 cycle of 5 min extension at 72 0C. The correctness of 
PCR products was analyzed by agarose gel electrophoresis 
and visualized by staining with ethidium bromide. 

Amplified fragments of COMT and SULT1A1 were cleaved 
by Hin1II (NIaIII) and BfoI (HaeII) restriction enzymes, re-
spectively (Thermo Fisher Scientific Inc., Lithuania). These 
reactions were performed in the volume of 30 μl contain-
ing 2 μl of 10x FastDigest Green Buffer (Thermo Fisher Sci-
entific Inc., Lithuania), 10 μl amplified PCR product and 1 
μl FastDigest restriction enzyme. Incubations were con-
ducted at 37 0C for 1 hr and 37 0C for 30 min for Hin1II 
and BfoI with following inactivation at 80 0C for 5 min and 
65 0C for 10 min, respectively. Products of restriction frag-
ment lengths were separated on 2.4% agarose gel in TAE 
buffer (Tris-acetate-EDTA) at ambient temperature using 
GeneRuler 50 bp DNA ladder as marker (Thermo Fisher Sci-
entific Inc., Lithuania).

DNA sequencing reactions were performed in the core 
laboratory of Estonian Biocentre by Sanger sequencing 
method using BigDye Terminator v3.1 enzyme mixture. 

Examples of DNA genotyping for Val158Met in COMT gene 
and Arg213His in SULT1A1 gene are demonstrated in Fig-
ure 1 and Figure 2, respectively. 

Statistical Analysis
The frequency distributions of polymorphic genotypes of 
COMT Val158Met and SULT1A1 Arg213His for CLL patients 
and healthy controls were calculated and tabulated. To de-
termine differences in the genotypic distributions between 
cases and controls, Chi-square test was performed. For 
each polymorphic site, odds ratio values (ORs) along with 
95% confidence intervals (95% CIs) were determined using 
unconditional logistic regression model. Subjects with wild 
type genotypes (COMT Val158Val, SULT1A1 Arg213Arg) 
were used as reference groups for comparison of risk allele 
containing genotypes. P value below 0.05 was considered 
statistically significant.

Results
The study population included 47 CLL cases and 50 con-
trols that were all analyzed concerning the genotypes in 

COMT Val158Met and SULT1A1 Arg213His. There were 21 
men (45%) and 26 women (55%) among cases, and 16 men 
(32%) and 34 women (68%) among controls. The mean age 
of cases was 70.7±8.4 and of controls 61.1±8.5 years with 
the respective age ranges of 52-89 and 45-82 years. 

Figure 1. PCR-based RFLP analysis (a) and DNA sequencing (b) of 
COMT Val158Met (G>A) polymorphism. A 111 bp fragment of COMT 
was restricted by Hin1II (NIaIII) enzyme resulting in products with siz-
es of 89 bp for Val/Val; 89 and 71 bp for Val/Met and 71 bp for Met/
Met genotypes.
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Figure 2. PCR-based RFLP analysis (a) and DNA sequencing (b) of 
SULT1A1 Arg213His (638G>A) polymorphism. A 287 bp fragment of 
SULT1A1 was restricted by BfoI (HaeII) enzyme resulting in products 
with sizes of 167 and 120 bp for Arg/Arg; 287, 167 and 120 bp for Arg/
His and 287 bp for His/His genotypes.
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Table 1 represents the genotypic frequencies of COMT and 
SULT1A1 polymorphisms. These results showed the distri-
bution of COMT Val158Met genotypes among CLL cases 
of Val/Val 30%, Val/Met 51%, Met/Met 19% and controls 
28%, 42%, 30%, respectively. The distribution of SULT1A1 
Arg213His genotypes among CLL cases were Arg/Arg 32%, 
Arg/His 47%, His/His 21% and among controls 28%, 40%, 
32%, respectively. Although no statistically significant as-
sociations revealed, individuals with low methylation and 
sulfation activities exerted a suggestive inverse associa-
tion with CLL risk (OR=0.60, 95% CI 0.20-1.82 for COMT 
Met158Met and OR=0.58, 95% CI 0.20-1.71 for SULT1A1 
His213His), as compared to individuals carrying wild type 
genotypes, i.e., Val158Val for COMT and Arg213Arg for 
SULT1A1.

Discussion
Due to a small general population in Estonia, the number 
of CLL cases involved in this work was also rather limited 
being reflected in the odds ratio measures with wide con-
fidence intervals. However, the distribution of COMT geno-
types among controls (28% Val158Val, 42% Val158Met, 30% 
Met158Met) is similar to the values described previously 
for Caucasian subjects (~25% Val158Val, ~50% Val158Met, 
~25% Met158Met) adding validity to the results of the cur-
rent work.[6, 35]

One of the most important functions of COMT and SULT1A1 
enzymes in the human body is metabolization of estrogen 
to methoxy estrogens and estrogen sulfates by inactivat-
ing the potentially harmful intermediate semiquinones 
and quinones formed from catechol estrogens during 
their oxidation.[6, 19, 36–38] Lowered activity of detoxification 
processes due to functional polymorphisms in COMT and 
SULT1A1 enzymes can lead to accumulation of mutagenic 
and carcinogenic catechol estrogens and therefore ele-
vate the cancer risk.[6, 20, 35, 39] Indeed, experiments with the 

Syrian hamsters revealed an increased renal tumorigene-
sis by suppressing the activity of COMT.[40] In this context, 
the results of the current work, showing a suggestive, still 
statistically non-significant, 40% and 42% decrease in CLL 
risk with low activity enzyme variants COMT Met158Met 
and SULT1A1 His213His respectively, are somewhat un-
expected. Although it is possible that this outcome was 
caused by chance as the numbers of study subjects with 
corresponding genotypes were very small, the lowered 
risk can still be explained by several factors. First, albeit O-
methylation of catechol estrogens is considered a detoxifi-
cation pathway, elevated amounts of 2-methoxyestradiol 
has been recently found to produce breaks in chromosome 
and aneuploidy contributing thus to development of neo-
plasias.[41] Second, besides well-known function in detox-
ification of various cell-damaging substances, sulfation 
can also bioactivate several promutagens and carcinogens 
from food and environment, such as heterocyclic amines 
and polycyclic aromatic hydrocarbons, leading to a poten-
tial DNA damage.[5, 42–49] These dual actions can also provide 
some explanations to the inconsistent and controversial 
findings of epidemiological studies about associations 
between COMT Val158Met and SULT1A1 Arg213His geno-
types and susceptibility to different cancer types indicating 
that these relationships can be much more complex and 
depend probably on numerous endogenous and exoge-
nous determinants, such as age, gender, ethnicity, level of 
physical activity, obesity, menopausal status, age at menar-
che, number of full term pregnancies, family history of cer-
tain malignant disorders, but also exposure to contracep-
tives and hormone replacement therapy, tobacco smoke or 
other environmental pollutants.[5, 6, 9, 50–55] Unfortunately, the 
small number of study subjects in this work did not allow 
us to make any further stratification analyses for suscepti-
bility to CLL. 

Furthermore, several plant-derived dietary flavonoids, 
such as flavonols quercetin, myricetin and fisetin, flavone 

Table 1. Genotype frequencies of COMT and SULT1A1 polymorphisms among cases and controls and their association with CLL

  47 Cases (%) 50 Controls (%) OR (95% CI) p

COMT Val158Met
 Val/Val (high) 14 (30) 14 (28) 1 (Ref.) 
 Val/Met (intermediate) 24 (51) 21 (42) 1.14 (0.44-2.94) 0.78
 Met/Met (low) 9 (19) 15 (30) 0.60 (0.20-1.82) 0.37
 Val/Met, Met/Met 33 (70) 36 (72) 0.92 (0.38-2.21) 0.84
SULT1A1 Arg213His
 Arg/Arg (high) 15 (32) 14 (28) 1 (Ref.)
 Arg/His (intermediate) 22 (47) 20 (40) 1.03 (0.40-2.65) 0.84
 His/His (low) 10 (21) 16 (32) 0.58 (0.20-1.71) 0.32
 Arg/His, His/His 32 (68) 36 (72) 0.83 (0.35-1.98) 0.67
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luteolin and tea flavanols (catechin, epicatechin, epicat-
echin gallate, epigallocatechin, epigallocatechin gallate) 
also contain catecholic structure representing thus sub-
strates for O-methylation by COMT.[56–60] These and other 
flavonoids with general polyphenolic structure are also me-
tabolized by SULT1A1-catalyzed sulfation reaction in the 
small intestine and liver.[5, 61, 62] Dependent on the dietary 
habits, humans consume up to 1 g of flavonoids per day, 
presenting in fruits and vegetables, nuts, spices, medicinal 
herbs, but also plant-based beverages like cocoa and tea.
[5, 56, 61] Numerous in vitro works with cell lines and in vivo 
studies with animal models have demonstrated that these 
plant secondary metabolites exert various anticancer prop-
erties, such as antioxidant, antiproliferative, proapoptotic, 
antiinvasive, antiangiogenic and antimetastatic effects.[63, 

64] However, compared to the parent flavonoids originally 
present in plant-based food items, anticancer potential of 
their O-methylated or sulfated conjugates as the major me-
tabolites entering bloodstream is reported to be consider-
ably less efficient.[5, 6, 65–76] Although the current knowledge 
about anticancer action of COMT- and SULT1A1-mediated 
derivatives of flavonoids is still rather limited, it is possible 
that lower efficacy of O-methylation and sulfation pro-
cesses caused by polymorphisms in these enzymes can 
provide somewhat higher levels of intact flavonoids enter-
ing circulation and reaching target tissues to exert more 
protection against initiation and development of chronic 
lymphocytic leukemia. 

According to the best knowledge of authors, there are no 
studies performed to date about the role of COMT and 
SULT1A1 polymorphisms in susceptibility to CLL. For COMT 
Val158Met, Skibola et al. demonstrated a 1.6-fold increase 
in the risk of non-Hodgkin lymphoma among American 
women with two Met alleles (Met158Met) compared to 
their counterparts homozygous to Val alleles (Val158Val).[77] 
Concerning SULT1A1, no results about the possible role of 
Arg213His polymorphism on hematological malignancies 
have been reported.[5]

The strengths of the current work included ethnical homo-
geneity of the study population and obviating the possibil-
ity for detection of genetic changes formed in any stages 
during carcinogenesis as tumoral B cells were eliminated 
from peripheral blood mononuclear cells before separa-
tion of genomic DNA. Indeed, we have previously shown 
that Val158Met polymorphism in COMT gene can be spe-
cific for tumoral B cells and possibly involved in the pro-
gression of CLL.[78] However, this study had also several lim-
itations, including small number of subjects and a possible 
selection bias. As controls, a mixed cohort of medical staff 
and healthy individuals visiting hospital for risk estimation 
of hereditary cancers was used. The possibility that distri-

bution of COMT and SULT1A1 genotypes among people 
with family history of neoplasms might differ from general 
population can not be fully excluded. Also, we can not rule 
out the possibility that some unknown factors could play 
role in associations between studied gene variants and tu-
morigenesis risk.

This is the first study presenting results on associations be-
tween functional polymorphisms in COMT and SULT1A1 
metabolic enzymes and the risk of CLL. Although statisti-
cally non-significant, the suggestive reduction of CLL risk 
related to low activity enzyme variants certainly needs 
further investigations with larger study cohorts allowing 
also stratifications by potentially important endogenous 
and environmental factors. At that, dietary choices and 
preferences of plant-based food products rich in natural 
flavonoids may prove to be crucial. In parallel, expansion 
of in vitro and in vivo studies on antileukemic action of 
methylated and sulfated metabolites of dietary polyphe-
nols is equally important to delineate possibilities for pos-
sible prevention of CLL in the future.
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